
CS414/415 Section 3
Project 3: Unreliable datagrams

Krzysztof Ostrowski
krzys@cs.cornell.edu
Slides modified from previous years’ slides

mailto:krzys@cs.cornell.edu
mailto:krzys@cs.cornell.edu

What do you have to do?

Implement unreliable communication
Simulate (parts of) the UDP/IP protocol
Build a datagram networking stack

Use the provided pseudo-network interface
(see ”network.h”)
Interface in „minimsg.h”, skeleton code in
„minimsg.c” provided to fill in
Implement ports to identify the endpoints
Build a minimessage layer for thread I/O

A glimpse at interface to implement

#define MINIMSG_MAX_MSG_SIZE (4096)
typedef struct miniport* miniport_t;
typedef char* minimsg_t;

void minimsg_initialize();

miniport_t miniport_local_create();
miniport_t miniport_remote_create(network_address_t addr, int id);
void miniport_destroy(miniport_t miniport);

int minimsg_send(miniport_t local, miniport_t remote, minimsg_t
msg, int len);

int minimsg_receive(miniport_t local, miniport_t* remote, minimsg_t
msg, int *len);

Networking pseudo-device (1)

Allows communication between
minithreads systems
Interrupt-driven implementation

Network_handler
Similar to clock handler, same interrupts used
Executed separately for each received packet
Uses the stack of the current thread
Should finish as soon as possible
Initialized with ”network_initialize()”

Networking pseudo-device (2)

Network_handler receives a structure:
typedef struct
{

network_address_t addr; // sender
char buffer[MAX_NETWORK_PKT_SIZE]; // hdr+data
int size; // size

} network_interrupt_arg_t;

Need to strip the header off the buffer

Call “network_initialize” function
After clock_initialize()
Before enabling interrupts and running threads

Networking functions

Network_send_pkt – sends a packet
Destination
Header (body, length)
Data (body,length)

Header:
Extra information

About the sender
About the receiver

As small as possible

Miniports

Data structures that represents endpoints
Network Device does not control which thread
processes a received packet

Local ports:
Usually, used for listening
Not bound to any remote ports
Can receive from any remote port

Remote ports:
Created when a packet is received
Bound to a “remote” port
Allows the receiver to reply

Miniports example (1)

Ports 1,3 – local ports; 2 – remote port
A,B - Threads
Sender A sends a message to Receiver B

Sender

2

A
1

Receiver

B

3

Miniports example (2)

Minithread system creates the remote port 100
Message is delivered to the local port
B receives the message;

Sender

2

A 1

Receiver

B

3

100

Miniports example (3)

B replies to A using the newly created remote port
The message is relayed to A’s local port

Sender

2

Receiver

A
B

3

100

1

Miniports – how would they look like?

typedef struct miniport {
char port_type;
int port_number;

queue_t msg_queue;
semaphore_t msg_sem;
semaphore_t msg_mutex;

network_address_t remote_address;
int remote_port;
int remote_is_local;

} miniport;

Miniports – you can use unions

struct miniport {
char type;
unsigned int portno;
union {

struct {
queue_t receiver_queue;
semaphore_t queue_lock;
semaphore_t data_ready;

} loc;
struct {

unsigned int portno;
network_address_t addr;

} rem;
} u;

};

Miniports - hints

Local communication
Note that miniport_destroy function will be
called by the receiver
remote_miniport as a pointer to a local port
miniport_send implemented based on the
“remote port”

Miniports
Identified by numbers
Assigned them successive numbers
Local miniports – start from 0
Remote miniports – start from 32768

Minimsg layer

Identifies the end-points of the
communication (ports)

The sender assembles the header used to
identifies the endpoints
The receiver

examines the header
Identifies destination
Enqueues the packet in the right place, wakes
up any sleeping threads

Minimsg functions

Minimsg_send:
Non-blocking
Parameters:

local and remote ports
The message and its length

Appends the header to the message
Sends the entire data using network_send

Minimsg_receive:
Blocks the thread until it receives a message on the
specified port
Receives information about the remote port – used
to reply

Implementation hints
Do not add unnecessary data to the header

Include the address of the sender (used later by the
ad-hoc routing protocol later)

Port operations must be O(1)
Do not waste resources
Make sure a port in use is not reassigned
Remote miniports are destroyed by the
application
network_initialize returns the ip address of
the machine
Build other test cases

	CS414/415 Section 3Project 3: Unreliable datagrams
	What do you have to do?
	A glimpse at interface to implement
	Networking pseudo-device (1)
	Networking pseudo-device (2)
	Networking functions
	Miniports
	Miniports example (1)
	Miniports example (2)
	Miniports example (3)
	Miniports – how would they look like?
	Miniports – you can use unions
	Miniports - hints
	Minimsg layer
	Minimsg functions
	Implementation hints

